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ABSTRACT 
 
In introductory chemistry courses, should students be encouraged to solve problems by 
reasoning based on conceptual understanding or by applying memorized facts and algorithms?   
Cognitive scientists have recently studied this issue with the assistance of new technologies. In 
the current consensus model for cognition, during problem solving the brain relies on “working 
memory” to sequentially process small elements of knowledge. Working memory is able to 
hold and manipulate virtually all elements that can be recalled “with automaticity” from long-
term memory, but very few elements that are not recallable. As one consequence, students can 
reliably solve well-structured science problems only if most of the facts and algorithms needed 
to solve the problem have previously been well memorized. To achieve automaticity in recall, 
facts and procedures must be committed to memory (assimilated) and then tagged with 
associations to other knowledge (accommodated) in the brain’s conceptual frameworks. 
Accommodation can be assisted by guided inquiry. Articles citing methods that can assist 
students in the development of automaticity are listed, and implications for chemistry 
instruction are discussed. 
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Learning Theories 
 
By definition, “chemistry education” is multi-disciplinary:  Work in our field calls for 
knowledge of (1) chemistry, and (2) how the student brain solves problems.  However, for most 
instructors, our coursework has been more “in the discipline” than “about the brain.”  In part 
this may be because in chemistry there is much that is known with precision:  Until recently, 
relatively little about the brain could be measured or stated with certainty. 
 
For several decades, as scientific attention to cognition increased, a growing number of 
chemistry educators have explored cognitive psychology in search of instructional strategies to 
improve student learning. The theories of Swiss psychologist Jean Piaget (1896-1980) have 
frequently been cited for guidance.  Piaget theorized that memory was organized in linked 
conceptual frameworks (each termed a schema) formed by the processes of “assimilation” 
(moving information into memory) and “accommodation” (modifying existing frameworks to 
incorporate new information) (Nurrenbern 2001). 
 
A second facet of Piaget’s theories proposed that young people progressed through stages of 
intellectual development, including a final transition to a “formal operational” stage where 
reasoning can be based on abstract concepts.  According to Piaget, not all individuals reached 
this highest level, but many educators citing classical or modified Piagetian theories suggested 
that activities could help to move more students to this stage (Herron 1975, Bodner 1986; 
Cracolice 2005). 
 
Beginning in the 1970’s, scientists measuring cognitive activity proposed a substantial 
modification to the Piagetian theories. In this “information processing” model, reasoning is 
based on the interaction of two structures:  A “long-term memory” (LTM) where information is 
stored and organized and “working memory” (WM) where information is processed (Clark et 
al. 2012). Seeking ways to help students solve problems in chemistry, studies based on this 
model have emphasized improving the organization of LTM (Johnstone 2010).  
 
Since 1990, new technologies including functional magnetic resonance imaging (fMRI), positron 
emission tomography (PET), magnetoencephalography (MEG), and instruments to study eye 
movement have measured cognitive processes at scientific levels of precision. With an increase 
in verified data, past learning theories have been modified and a consensus has been reached 
among cognitive scientists on rules that govern how the brain solves some types of problems. 
One agreement is that nearly all children reach the stage of cognitive development where they 
are able to reason abstractly (Willingham 2008; National Research Council 2008; Anderson 
2009).   
 
In the current consensus model among cognitive scientists, problem solving is explained by the 
interaction of an LTM composed of conceptual frameworks and a WM where information is 
processed during thought (Willingham 2007; Anderson 2009). This model is detailed in 
textbooks for introductory cognitive psychology with a copyright date since 2006.  Some 
components of the model with special relevance for chemistry instruction are provided below. 
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Long-Term Memory 
 
In LTM, information is stored as elements of knowledge (small “chunks” of memorized facts, 
equations, or procedures) that are linked to form schema by a process of association similar to 
the accommodation mechanisms proposed by Piaget (Anderson and Lebiere 1998; Nurrenbern 
2001, Willingham 2007). 
 
As a result of natural selection, humans are biologically programmed so that a few types of 
learning are a focus of attention during “window periods” of development.  A primary example 
is the acquisition of fluency in a spoken language prior to about age 12 (Pinker 2007).  For types 
of knowledge that are not a focus of instinctive attention, including the facts and procedures of 
science, assimilation is initially resisted by LTM but can be reliably accomplished by repeated 
effort to recall new information spaced over multiple days. As new elements are encountered in 
different contexts, accommodation occurs. New associations modify frameworks and expand 
understanding (Anderson et al. 2000, Clark 2006, Clark et al. 2012).   
 
Human LTM has enormous capacity. As one example, between birth and age 6, most children 
learn to comprehend between 8,000 and 16,000 words, and for a substantial percentage, they are 
able to apply hundreds of complex rules for use correctly, automatically, and effortlessly as they 
speak (Willingham 2007).  By age 12, children can fluently recall twice as many words, plus 
thousands of other knowledge elements including names and images of people and places, 
events, facts and procedures of mathematics and science, and associations with sounds, odors, 
and textures. Only a small percentage of what we sense is incorporated into LTM, but if 
information is assimilated and accommodated, it can often be recalled for a lifetime (Anderson 
2009, Clark et al. 2012). 
 
Memory must be constructed at a gradual pace. As one example, between 18 months and first 
grade, even for the learning of language (which is powerfully instinctive), children typically 
learn the meaning of about 5-10 words per day (Willingham 2007).   
 
Working Memory 
 
In science, a primary goal is to solve problems.  The brain solves problems in structures that 
taken together are termed working memory. WM can accept elements of knowledge from the 
environment, such as by listening or reading.  If those elements have not previously been stored 
in LTM, they are termed “novel” elements.  WM can also recall elements from LTM. What is 
termed thought, reasoning, planning, or problem solving is accomplished by the sequential 
processing of elements by WM (Anderson 2009; Clark et al. 2012). 
 
During processing, WM can hold and manipulate an essentially unlimited number of elements 
that can be recalled from LTM “with automaticity” (quickly and accurately) based on cues and 
associations (Ericsson and Kintsch 1995).   
 
However, when processing knowledge that has not previously been stored in LTM, WM is 
severely limited in both duration and capacity.  Novel elements can be held in WM for only 30 
seconds or less unless rehearsed (Peterson and Peterson 1959).   In 1956, Miller famously noted 
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that the number of “chunks” of novel knowledge that can be held in WM was “seven, plus or 
minus two,”  but in 2000 Cowan found that when knowledge is being manipulated during 
reasoning rather than simply being remembered, WM can hold only about 3-5 novel elements at 
any point in time (Cowan 2000, Miller 1956).  
 
In subsequent studies, “3-5 chunks” and “30 seconds” were verified as being at the upper limits 
for novel elements that can held in WM at any point during problem solving.  These capacities 
increase during childhood, decline in the elderly, and vary somewhat among individuals, but 
research indicates that there is no action you can take to significantly increase the capacity or 
duration of your novel WM (Cowan 2010; Clark et al. 2012). 
 
To summarize:  In the “working memory” where we solve problems, space for non-memorized 
information is minimal, but the ability to recall, hold, and apply previously well-memorized 
information is essentially unlimited. 
 
Well- versus Ill-Structured Problems 
 
Between 2006 and 2010, cognitive scientists vigorously debated the implications for teaching 
and learning of the limits quantified by Cowan for novel working memory (Kirschner et al. 
2006; Tobias and Duffy 2009).   As one outcome, among experts in cognition, since 2010 there 
has been general agreement about how students can most efficiently learn to solve many, but 
not all, of the types of problems encountered during pre-graduate-level courses in chemistry.   
 
Cognitive science divides problems into two categories:  “Well-structured” and “ill-structured” 
(Simon 1973; Spiro and DeSchryver 2009).  Well-structured problems are those in which experts 
in the discipline agree upon clear rules that apply, appropriate procedures to solve, and precise 
“right answers.” Examples include most math problems, and in chemistry, problems including 
stoichiometry, solving algebraic relationships, or predicting the qualitative outcome of 
processes such as precipitation or oxidation-reduction.  
 
Ill-structured problems come in several varieties.  One is when a “right” answer is arguable 
among experts, as in many problems assigned in introductory courses in philosophy, literary 
interpretation, political science, and economics.   In introductory chemistry, “Should our nation 
have a $4/Mg C carbon tax?” is a type of arguable ill-structured question that might be 
assigned in “Environmental Chemistry” or “Chemistry and Society” courses, or as part of a 
“science and society” unit in general chemistry for science majors. 
 
A second type of ill-structured problem would be when a student is assigned a well-structured 
problem that they have not been taught to solve in a structured way, as when a new chemistry 
topic is introduced with an “inquiry” activity.  For ill-structured problems, students might use a 
variety of general approaches to attempt to solve.  These “heuristics” would include rules of 
thumb, trial and error, generalized reasoning or critical thinking strategies, and means-ends 
analysis (Willingham 2007).   
 
Among cognitive scientists, there continues to be debate on the best methods to teach students 
to solve ill-structured problems.  In contrast, there has been substantial agreement among 
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cognitive scientists since 2010 for the limited case of how the brain solves well-structured 
problems and how students should prepare to solve such problems (Tobias and Duffy 2009). 
 
In introductory “Chemistry for Science Major” courses, a central goal is to teach the procedures 
and strategies needed to solve quantitative and other rule-based problems that are frequently 
encountered in most scientific and engineering fields.  Nearly all of the “end-of-chapter” 
questions in standard general and organic chemistry textbooks are well-structured.   
 
Because these courses have relatively large enrollments and the cognitive science consensus is 
limited to well-structured problems, for the remainder of this paper we will limit our attention 
to well-structured problem-solving. Unless otherwise noted, a reference to a “problem” will 
mean the well-structured “end-of-chapter-type” problems in “science major” chemistry courses. 
 
References for Educators 
 
For educators, understanding how the student brain learns, how it solves problems, and what 
information it needs to solve problems is a central concern in our work.  Experts in cognition 
have recently written a number of books and articles to assist instructors in exploring the 
implications of the new scientific consensus on problem solving.  The following is a brief 
summary of publications that explore these issues with minimal technical jargon but extensive 
citation of primary sources.   
 
1. A 4-page non-technical primer on how the brain solves problems is in the section “The 

Human Brain – Learning 101,”on pages 8-11 at 
http://www.aft.org/pdfs/americaneducator/spring2012/Clark.pdf     

 
2. A 8-page summary focused on how the brain solves problems in the physical sciences and 

math is on pages  4-2 to 4-10 of  The Report of the Task Group on Learning Processes in the Final 
Report of the National Mathematics Advisory Panel (NMAP) at  
https://www2.ed.gov/about/bdscomm/list/mathpanel/report/learning-processes.pdf     

 
3. The important role of “automated” learning is summarized by Richard Clark on PDF pages 

17-24 of “Not Knowing What We Don’t Know” at 
http://www.cogtech.usc.edu/publications/clark_automated_knowledge_2006.pdf  

 
4. The 2014 book Make It Stick by Brown, Roediger, and McDaniel reviews in detail college-

level study strategies that build and organize LTM such as self-quizzing (including 
flashcards), summary sheets, interleaved practice, and elaboration.  

 
5. For high school instructors, Principles of Instruction by Barak Rosenshine is a 9-page 

summary of structures for classroom instruction to maximize learning. 
http://www.aft.org/periodical/american-educator/spring-2012/principles-instruction  

 
6. Columns in the American Educator by Daniel Willingham review cognitive research.  Topics 

in science instruction are summarized in Post #10 at www.ChemReview.Net/blog .  
Willingham’s Why Don’t Students Like School is a 240 page paperback for under $15. 
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From those publications and others by cognitive experts, we have summarized below a number 
of on issues of particular interest in chemistry instruction.  
 
The Importance of Automaticity 
 
How can the impact of the limits on novel WM be minimized?  The key strategy cited by 
cognitive researchers is “automaticity.”  In 2008, in the Report of the National Mathematics 
Advisory Panel (NMAP), a US presidential commission, David Geary, Valerie Reyna, Robert 
Siegler, Susan Embretson, and Wade Boykin advised,  

 
“At all ages, there are several ways to improve the functional capacity of working 
memory. The most central of these is the achievement of automaticity, that is, the fast, 
implicit, and automatic retrieval of a fact or a procedure from long-term memory.” 
(Geary 2008). 

 
There is also widespread agreement on what information must be automated.  Daniel 
Willingham (2004) writes,  

 
“In each field, certain procedures are used again and again. Those procedures must be 
learned to the point of automaticity so that they no longer consume working memory 
space.  Only then will the student be able to bypass the bottleneck imposed by working 
memory and move on to higher levels of competence.” 

 
Reviewing methodologies that have applied computer programming to model information 
processing by the brain, Richard Clark (2006) notes,  

 
“John Anderson’s ACT-R model … makes a very compelling case that all effective 
applied knowledge must be proceduralized and automated in order to circumvent the 
limits on working memory….  Most (other researchers) reach a similar conclusion about 
the importance of the automaticity process.”  

 
Another way to express these findings:  Unless students have thoroughly memorized the key 
facts and procedures that need to be applied to solve a problem, it is unlikely they will be able 
to solve. 
 
Achieving Automaticity 
 
Achieving automaticity requires first moving new elements into LTM, and then working with 
both new and existing elements in a variety of contexts to develop associations (linkages) within 
the brain’s conceptual frameworks (Anderson et al. 2000). 
 
For non-experts (termed “novice” learners in a domain, which includes nearly all 
undergraduates), except for the limited topics of instinctive interest, achieving automated recall 
of new knowledge requires substantial effort.  In part this is because the conceptual frameworks 
that organize the brain protect their stability by resisting new information that does not “fit” 
(Sweller 2009).  LTM can assimilate new elements in unfamiliar domains, but such learning 
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generally requires repeated practice in the recall of facts and procedures spaced over several 
days.  Variations of this learning strategy may be referred to as retrieval practice, spaced 
overlearning and application of the testing effect (Geary et al. 2008; Willingham 2009; Brown et al. 
2014).  

 
For automaticity to be effective, information must be recalled from the vast storehouse in LTM 
at appropriate times.  To gain understanding of when knowledge is needed and when it is not, 
new elements must be applied during practice in problem solving so that the brain will 
associate a range of context cues with each new element.  Study strategies that include 
interleaved practice, reflection, elaboration, and faded guidance gradually promote the fluent 
(effortless, appropriate, automatic) recall of elements that supports an intuitive sense of the 
steps to take to solve a problem.  There is substantial evidence that these strategies to promote 
assimilation and accommodation significantly improve student success in problem solving 
(Clark et al. 2012; Rosenshine 2012, Brown et al. 2014). 

 
Willingham (2009) describes the central cognitive principle as “memory is the residue of 
thought.”  We best remember what we think about repeatedly.  Elements that are processed in 
the context during thought become associations defining the meaning of knowledge in memory.  
 
Concepts, Inquiry, and Sequence  
 
Our initial focus on memorization should not be taken to suggest that concepts are 
unimportant.  Concepts are essential as a way to organize memorized elements. 
 
There are a variety of proposed models to explain and predict the behavior of LTM, but in 
nearly all cases LTM is described as having a “parallel processing” structure (Willingham 2007).  
A word or fact or algorithm in LTM might be linked to other elements based on what it sounds 
like, or looks like, or is symbolized, or where it is encountered, or when it happens in a 
sequence, or how it behaves, or by its semantic categories. Some elements are linked to more 
elements than others or have linkages with higher strengths.  Those higher-level “concepts,” 
such as “potential energy” or “3-D molecular models” or “the behavior of particulate models” 
in chemistry, help to organize conceptual frameworks into a “deeper” structure.  Sensing a 
knowledge element (such as detecting the odor of ammonia) leads to activation of 
representations of that element in LTM (such as molecular or structural formulas), which 
activates linkages to associated facts and algorithms (such as gas at room temperature, lone 
pair, or basic aqueous solutions).  Those elements are weighed depending on other context cues, 
selectively recalled into WM, and applied to solve problems.   
 
However, before it can be conceptually organized, an element must first be moved into LTM by 
effort to recall its content.  A concept does not create a procedure that solves a problem, but by 
gradually linking new elements within a conceptual framework, appropriate memorized 
procedures can be recalled for a wider variety of problems (Anderson et al. 2000).  
 
Our discussion so far does not address whether or not there is a function for inquiry based 
exercises.  Research does show that inquiry activities can help both before and after initial work 
to assimilate new knowledge. 
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Achieving automaticity at recall of facts and procedures requires substantial effort, and 
strategies that promote recall, such as flashcards for self-testing, may not be pleasurable for 
most students.  Inquiry that creates curiosity about a topic can motivate students to persist at 
the hard work of learning. (Duckworth et al. 2007)  In addition, Schwartz et. al. (2011) note that 
guided inquiry to introduce a topic can prepare students to see deeper conceptual principles as 
they later work to automate factual recall.  This initial inquiry, however, must be carefully 
monitored so that students do not “discover” misconceptions that they move into memory 
(Rosenshine 2012).  
 
After students have practiced recall of new elements and practiced problems that apply that 
knowledge, active learning including demonstrations can help to create vivid associations that 
define meaning and identify the context in which new elements will likely be encountered. The 
frameworks that connect facts and algorithms must be constructed in the brain of each 
individual (Geary et al. 2008, Sweller 2009).  

 
Findings of cognitive science suggest the following instructional sequence when introducing a 
new topic. 
 

A. First, a short inquiry activity that involves the topic and its context.  
 
B. A lecture or “lecture note handout” with frequent “clicker questions” that provoke 

thought about the meaning of new knowledge. 
 
C. Study by students to commit new facts, equations, and procedures to LTM and practice 

their recall. 
 
D. Interleaved practice that applies new knowledge to different types of problems. 
 
E. Demonstrations and inquiry that tag new information with visual, auditory, and 

semantic associations. 
 

In higher education, Steps A and E can be done during class time, while B-D can be completed 
during study time (as one form of “flipped” instruction). 
 
Fluent Recall versus Reasoning 

 
We have now arrived at our initial question:  “Should students be encouraged to solve 
problems by reasoning based on conceptual understanding or by applying memorized facts and 
algorithms?”  (In this usage, “algorithms” are procedures with sequenced steps to achieve a 
goal.)  Experts in cognition say that during introductory courses, students should learn to solve 
well-structured problems using well-structured algorithms that are memorized until they can 
be recalled with automaticity.  
 
When solving new problems, the brain relies primarily on recall of steps taken to solve prior 
problems which had similar cues and context elements (Anderson et al. 2000; Clark 2006).  By 
definition, well-structured problems have procedures to solve that are rule-based and highly 
reliable.  Learning these algorithms and when to apply them takes substantial practice, but the 
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result is that in problems such as titration or gas law calculations, an appropriate algorithm or 
equation can be intuitively recalled, and if is applied without error, a precise right answer 
should result every time.   
 
When algorithms become practiced to the point that they can be applied effortlessly, in 
cognitive science they are termed automated procedures.  Generally, we are conscious of novel 
information being held in WM, but when knowledge is applied automatically from LTM we are 
often unconscious of doing so (Clark 2006). 
 
Recalling procedures at appropriate times is a process the human brain evolved to support.  
When speaking, each of us fluently (unconsciously, effortlessly, quickly, intuitively, 
automatically) recalls and applies precise and appropriate words (facts) and rules for 
pronunciation, morphology, and syntax, and we do so at a rapid rate (Pinker 2007).  
 
For learning not instinctive, such as solving mathematical or well-structured chemistry 
problems, the process is similar to initial language acquisition, but initial learning requires 
focused effort.  Cognitive science recommends that teaching well-structured problem solving 
should include a structured sequence of clear, direct instruction in facts and algorithms, then 
extensive student practice in applying new knowledge to solve a variety of problems. The goal 
is that over time, facts and procedures are recalled automatically in a growing number of 
contexts. (Clark 2006; Brown et al. 2014)   
 
Novice-Expert Differences 
 
Cognitive science suggests that the strategy of having students solve problems by “thinking like 
a scientist” has inherent flaws.  Science says that the novice brain simply cannot reliably solve 
well-structured problems in that manner. 
 
Experts in a domain have a robust network of linked schema, organized by broad concepts.  
This allows them to assimilate new information more readily and to solve problems more 
quickly.  By recognizing the deep structure of problems, experts can either fluently recall past 
procedures or construct mental models based on similar recalled situations. But to “solve 
problems like a scientist,” students need the LTM of a scientist. That memory requires slow 
physiological changes, over years of study, for the brain to construct (Geary et al. 2008; 
Schwartz et al. 2011; Clark et al. 2012). 
 
What results when novice learners try to reason with multiple elements of knowledge that are 
not well-memorized?  During problem solving, the 3-5 novel element space must include the 
problem goal, the steps to solve if they are not well-memorized, where one is in the steps, and 
the data being processed at a given point.  If that space becomes filled, a new novel element will 
replace a previously stored novel element.  If a replaced element was needed during processing, 
the student becomes confused and unable to solve. As a result, novice learners nearly always 
must solve problems by applying non-novel facts and algorithms (Willingham 2004; Clark 2006; 
Clark et al. 2012). 
 
Willingham (2004) suggests the following type of experiment to illustrate the impact of WM 
limitations. Secure blank paper and a pencil (or pen). Then, without using the pencil, calculator, 
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fingers or toes, multiply 62 times 78 “in your head.”  Pick up the pencil only when you are 
ready to write your 4 digit answer. Try it. Allow two minutes. 
 
Done?  The confusion you experience, even for a simple 2 digits times 2 digits, demonstrates 
what students experience when asked to solve problems by reasoning when middle step 
answers are not well-memorized. Now try the problem using paper and pencil.  
 
Success comes quickly with an algorithm designed to sequence processing and limit WM 
overload that, thanks to instruction, memorization, and practice, you were able to fluently recall 
from long ago.  
 
In a paper arguing for the use of “constructivist” approaches when solving ill-structured 
problems, cognitive scientists Rand Spiro and Michael DeSchryver (2009) write: 
 

“In well-structured domains, we agree that concepts can be directly instructed, fully-
explained, and simply supported – and more often than not they should be.  Yes, the 
data favor direct instructional guidance, but most of this data is from well-structured 
domains like physics and mathematics…..  It could be said that direct instructional 
guidance approaches have been validated for just those domains where essential 
information was most identifiable and full explanation most viable – i.e., where those 
approaches were most likely to work.” 
 

For the limited case of the well-structured problems in mathematics, physics, and chemistry, 
there is broad agreement among cognitive experts that students must learn to master well-
structured procedures.  When students cannot automatically recall a procedure to solve a well-
structured problem, heuristics can be employed, but rules of thumb or trial and error strategies 
generally do not result in the high rate of success necessary for work in science, health, and 
engineering. 

 
Understanding versus Fluency 

 
In introductory courses, is “explicit understanding” important in learning?  Only to a limited 
extent.  For example, if you write “I bent one glass tube but broke the other,” do you 
understand that you are using two of the relatively small number of the irregular verbs of 
English?  Do you understand why bent and broke are the proper past tense of bend and break, 
though we may plea “on bended knee?”  
 
For chemistry instructors, perhaps not.  Yet since about age 5 you have likely been able to use 
bent and broke correctly whenever called for because your brain evolved to support intuitive, 
automated, implicit understanding.  Linguistics majors need explicit understanding of those 
rules, but for you, English is a tool.  A correct answer without detailed and explicit grammatical 
understanding is nearly always sufficient -- and achieved. 
 
Even in the case of problem solving that is not instinctive, such as calculating the value for a 
variable in the Nernst equation, are you able to solve even without an explicit understanding of 
when you are using associative, commutative, or distributive properties?  As a chemist, and for 
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your non-math-major students, solving the algebra correctly in practice is what matters for most 
work. 
 
In many respects, mathematics, chemistry, and physics are symbolic written languages in which 
fluency (implicit understanding) in applying facts (words) and rules (syntax) is required in the 
use of each language but explicit understanding is necessary only in areas of disciplinary 
expertise. 
 
According to the National Science Foundation (2013), in 2010 only 0.74% of the bachelor’s 
degrees awarded in the United States were in chemistry. Fifteen times more students (11.3%) 
majored in physics, engineering, biological, or agricultural sciences.  For nearly all of those 
majors, a quantitative first-year chemistry course is required, serving as essentially an 
“introduction with a quantitative emphasis to problem solving in the physical sciences.” 
 
General/GOB students ask our help to become fluent in the wide variety of chemistry 
calculations that may be needed in their careers.  With instruction and practice, students can 
reliably arrive at right answers to those chemistry-related problems in one or two semesters of 
study.  Fluency requires practice but limited explicit ability to explain broad principles (Pinker 
2007; Clark 2006).  Being able to explicitly explain why a fact or procedure should be applied is 
a worthy goal, but the understanding expected of chemistry majors will be developed on upper 
level chemistry courses.  This is understood by the American Chemical Society, which does not 
include freshman chemistry in the courses required for an ACS accredited degree. 
 
Conclusion  
 
Science instructors lead two lives.  As educators, we are often passionate.  As scientists, when 
views differ, our core belief is that all sides of an issue that have evidence to support them 
should be dispassionately evaluated based on what the data say.  If beliefs conflict with science, 
in determining instructional policy, science must prevail. 
 
The authors would suggest that if a question involves the content of chemistry, experts with 
research degrees in chemistry should be relied upon.  On questions of how the consensus 
among cognitive scientists applies to a problem in teaching chemistry, instructors with a degree 
in chemistry would have a valuable perspective.   
 
In our view, however, on a fundamental question of how the brain solves problems, to the 
extent there is a disagreement between the consensus of cognitive science and individuals with 
research degrees in the physical sciences, cognitive science should be relied upon.  Respect for 
disciplinary expertise is a foundation for science.  At any given time, “science” in a field is what 
the credentialed experts in that field agree it is. 
 
Thomas Kuhn (1962) observed that in science, a new consensus is reached when experts in a 
field repeat assertions that have been debated, and few experts in the discipline object to those 
assertions.  In learning to solve well-structured problems, as best the authors of this article can 
tell from our reading, over the past four years, no researcher in cognitive science has questioned 
the LTM/WM model, the necessity to memorize fundamentals to automaticity, or the value of 
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carefully guided inquiry in constructing understanding.  That said, we hope that our readers 
will challenge that finding if evidence to the contrary from cognitive experts can be found. 
 
Discussion and debate on the meaning of research is always warranted, but we hope it will 
proceed with some urgency.  As a percentage of U.S. bachelor’s degrees awarded, between 1985 
and 2010, chemistry degrees fell from 1.07% to 0.74%, a 31% decline.  Together, degrees in 
physics, engineering, and chemistry fell from 9.2% to 5.5%, a 40% decline (National Science 
Foundation 2013).   
 

Learning science must include the hard work of thorough memorization. That may not be a 
finding that we would prefer to hear, but cognitive scientists agree, based on quantified, 
verified data, that it is a necessary conclusion.   In our view, students will benefit from the 
discussion by educators of what these data say.  As instructors, we can better assist students in 
learning a scientific discipline by explaining how cognition works and by aligning our teaching 
with how the brain actually works and learns. 

 
Notes 

The authors declare the following competing financial interests:  Eric Nelson has co-
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